• Jadidi, A., Mostafavi, M. A., Bédard, Y. & Shahriari, K. Spatial representation of coastal risk: a fuzzy approach to deal with uncertainty. ISPRS Int. J. Geo-Information 3, 1077–1100 (2014).

    Article 

    Google Scholar
     

  • Wang, F. & Hall, G. B. Fuzzy representation of geographical boundaries in GIS. Int. J. Geograph. Inform. Syst. 10, 573–590 (1996).


    Google Scholar
     

  • Prampolini, M., Savini, A., Foglini, F. & Soldati, M. Seven good reasons for integrating terrestrial and marine spatial datasets in changing environments. Water 12, 2221 (2020).

    Article 

    Google Scholar
     

  • Leon, J. X., Phinn, S. R., Hamylton, S. & Saunders, M. I. Filling the ‘white ribbon’–a multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef. Int. J. Remote Sensing 34, 6337–6354 (2013).

    Article 

    Google Scholar
     

  • Westhead, K., Smith, K., Campbell, E., Colenutt, A. & McVey, S. Pushing the boundaries: Integration of multi-source digital elevation model data for seamless geological mapping of the UK’s coastal zone. Earth Environ. Sci. Trans. R. Soc. Edinburgh 105, 263–271 (2015).

    Article 

    Google Scholar
     

  • Talwani, M. & Eldholm, O. Boundary between continental and oceanic crust at the margin of rifted continents. Nature 241, 325–330 (1973).

    Article 

    Google Scholar
     

  • Austin, J. A. Jr & Uchupi, E. Continental-oceanic crustal transition off Southwest Africa. AAPG Bulletin 66, 1328–1347 (1982).


    Google Scholar
     

  • Micallef, A., Krastel, S. & Savini, A. Submarine geomorphology. (Springer, 2017).

  • Bodmer, M., Toomey, D. R., VanderBeek, B., Hooft, E. & Byrnes, J. S. Body wave tomography of the Cascadia Subduction Zone and Juan de Fuca Plate System: identifying challenges and solutions for shore‐crossing data. Geochemistry, Geophysics, Geosystems 21, e2020GC009316 (2020).

    Article 

    Google Scholar
     

  • Liu, L. et al. Integrated Geophysical Study of the Collision Between the North China Craton and the Yangtze Craton and Its Links With Craton Lithospheric Thinning. Earth Sci. 9, 796783 (2022).

  • Galloway, W. E., Ganey-Curry, P. E., Li, X. & Buffler, R. T. Cenozoic depositional history of the Gulf of Mexico basin. AAPG Bullet. 84, 1743–1774 (2000).


    Google Scholar
     

  • Eddy, D. R., Van Avendonk, H. J., Christeson, G. L. & Norton, I. O. Structure and origin of the rifted margin of the northern Gulf of Mexico. Geosphere 14, 1804–1817 (2018).

    Article 

    Google Scholar
     

  • Miao, W., Niu, F., Li, G. & Levander, A. Sedimentary and crustal structure of the US Gulf Coast revealed by Rayleigh wave and teleseismic P coda data with implications for continent rifting. Earth Planet Sci Lett 577, 117257 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, T., Ebuna, D. & Smith, K. in 2013 OCEANS-San Diego. 1–7 (IEEE).

  • Urlaub, M., Talling, P. J. & Masson, D. G. Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quaternary Sci. Rev. 72, 63–82 (2013).

    Article 

    Google Scholar
     

  • Talling, P. J. et al. Large submarine landslides on continental slopes: geohazards, methane release, and climate change. Oceanography 27, 32–45 (2014).

    Article 

    Google Scholar
     

  • Urlaub, M. et al. The Submarine Boundaries of Mount Etna’s Unstable Southeastern Flank. Front. Earth Sci. 234 (2022).

  • Klein, E., Urlaub, M. & Krastel, S. Shoreline-crossing geomorphology of instable volcanic islands from a quantitative DEM analysis. (Copernicus Meetings, 2022).

  • Zamrsky, D., Oude Essink, G. H. & Bierkens, M. F. Estimating the thickness of unconsolidated coastal aquifers along the global coastline. Earth System Science Data 10, 1591–1603 (2018).

    Article 

    Google Scholar
     

  • Paldor, A. et al. Deep submarine groundwater discharge—evidence from Achziv submarine canyon at the exposure of the Judea group confined aquifer, Eastern Mediterranean. J. Geophys. Res.: Oceans 125, e2019JC015435 (2020).

    Article 

    Google Scholar
     

  • Micallef, A. et al. Offshore freshened groundwater in continental margins. Rev. Geophys. e2020RG000706 (2021).

  • Post, V. E. et al. Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71–78 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, A. T., Reiche, S. & Clauser, C. Investigating the impact of the Pleistocene sea-level lowstand on offshore fresh groundwater on the New Jersey shelf (No. EGU21-9885). Copernicus Meetings (2021).

  • Thomas, A. T., von Harten, J., Jusri, T., Reiche, S. & Wellmann, F. An integrated modeling scheme for characterizing 3D hydrogeological heterogeneity of the New Jersey shelf. Marine Geophys. Res. 43, 1–19 (2022).

    Article 

    Google Scholar
     

  • Zamrsky, D., Essink, G. H. O., Sutanudjaja, E. H., van Beek, L. R. & Bierkens, M. F. Offshore fresh groundwater in coastal unconsolidated sediment systems as a potential fresh water source in the 21st century. Environ. Res. Lett. 17, 014021 (2021).

    Article 

    Google Scholar
     

  • Bratton, J. F. The three scales of submarine groundwater flow and discharge across passive continental margins. J. Geology 118, 565–575 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rocha, C. et al. A place for subterranean estuaries in the coastal zone. Estuarine, Coastal Shelf Sci. 107167 (2021).

  • Weymer, B. A. et al. Multi-layered high permeability conduits connecting onshore and offshore coastal aquifers. Front. Marine Sci. 7, 903 (2020).

    Article 

    Google Scholar
     

  • Attias, E., Thomas, D., Sherman, D., Ismail, K. & Constable, S. Marine electrical imaging reveals novel freshwater transport mechanism in Hawai ‘i. Sci. Adv. 6, eabd4866 (2020).

    Article 

    Google Scholar
     

  • Pondthai, P. et al. 3D characterization of a coastal freshwater aquifer in SE Malta (Mediterranean Sea) by time-domain electromagnetics. Water 12, 1566 (2020).

    Article 

    Google Scholar
     

  • Attias, E. et al. Marine electromagnetic imaging and volumetric estimation of freshwater plumes offshore Hawai’i. Geophys. Res. Lett. 48, e2020GL091249 (2021).

    Article 

    Google Scholar
     

  • Haroon, A. et al. Electrical resistivity anomalies offshore a carbonate coastline: Evidence for freshened groundwater? Geophys. Res. Lett. 48, e2020GL091909 (2021).

    Article 

    Google Scholar
     

  • Binley, A. et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Res. 51, 3837–3866 (2015).

    Article 

    Google Scholar
     

  • Buynevich, I. V., Jol, H. M. & FitzGerald, D. M. Coastal environments. Ground penetrating radar: Theory and applications, 299–322 (2009).

  • Jol, H. M., Smith, D. G. & Meyers, R. A. Digital ground penetrating radar (GPR): a new geophysical tool for coastal barrier research (examples from the Atlantic, Gulf and Pacific Coasts, USA). J. Coastal Res., 960–968 (1996).

  • Zarroca, M., Bach, J., Linares, R. & Pellicer, X. M. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J. Hydrol. 409, 407–422 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Dimova, N. T., Swarzenski, P. W., Dulaiova, H. & Glenn, C. R. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems. J. Geophys. Res. 117, C02012 (2012).

  • Swarzenski, P. W. & Izbicki, J. A. Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity. Estuarine, Coastal Shelf Sci. 83, 77–89 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Herckenrath, D. et al. Calibrating a salt water intrusion model with time‐domain electromagnetic data. Groundwater 51, 385–397 (2013).

    CAS 

    Google Scholar
     

  • Goebel, M., Knight, R. & Halkjær, M. Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay, California. J. Hydrol.: Regional Stud. 23, 100602 (2019).


    Google Scholar
     

  • Siemon, B. et al. Airborne and ground geophysical mapping of coastal clays in Eastern Friesland, Germany. Geophysics 80, WB21–WB34 (2015).

    Article 

    Google Scholar
     

  • Günther, T., Ronczka, M., Rochlitz, R., Kotowski, P. & Müller-Petke, M. in NSG2021 1st Conference on Hydrogeophysics. 1–5 (European Association of Geoscientists & Engineers).

  • Fitterman, D. Tools and techniques: Active-source electromagnetic methods. in L. Slater (ed.), Resources in the Near-Surface Earth Treatise on Geophysics 11, 295–333 (2015).

  • Zonge, K. L. & Hughes, L. J. in Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B 713–810 (Society of Exploration Geophysicists, 1991).

  • Micallef, A. et al. 3D characterisation and quantification of an offshore freshened groundwater system in the Canterbury Bight. Nat. Commun. 11, 1–15 (2020).

    Article 

    Google Scholar
     

  • Gustafson, C., Key, K. & Evans, R. L. Aquifer systems extending far offshore on the US Atlantic margin. Sci. Rep. 9, 1–10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Siemon, B., Christiansen, A. V. & Auken, E. A review of helicopter‐borne electromagnetic methods for groundwater exploration. Near Surface Geophys. 7, 629–646 (2009).

    Article 

    Google Scholar
     

  • Mogi, T., Tanaka, Y., Kusunoki, K. I., Morikawa, T. & Jomori, N. Development of grounded electrical source airborne transient EM (GREATEM). Exploration Geophys. 29, 61–64 (1998).

    Article 

    Google Scholar
     

  • Chen, C. & Sun, H. Characteristic analysis and optimal survey area definition for semi-airborne transient electromagnetics. J. Appl. Geophys. 180, 104134 (2020).

    Article 

    Google Scholar
     

  • Smirnova, M. V. et al. A novel semiairborne frequency-domain controlled-source electromagnetic system: Three-dimensional inversion of semiairborne data from the flight experiment over an ancient mining area near Schleiz, Germany. Geophysics 84, E281–E292 (2019).

    Article 

    Google Scholar
     

  • Ishizu, K. & Ogawa, Y. Offshore onshore resistivity imaging of freshwater using a controlled source electromagnetic method: A feasibility study. Geophysics 86, 1–55 (2021).

    Article 

    Google Scholar
     

  • Bertoni, C., Lofi, J., Micallef, A. & Moe, H. Seismic reflection methods in offshore groundwater research. Geosciences 10, 299 (2020).

    Article 

    Google Scholar
     

  • Pawlowski, R. The use of gravity anomaly data for offshore continental margin demarcation. Leading Edge 27, 722–727 (2008).

    Article 

    Google Scholar
     

  • Minakov, A., Faleide, J. I., Glebovsky, V. Y. & Mjelde, R. Structure and evolution of the northern Barents-Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophys. J. Int. 188, 79–102 (2012).

    Article 

    Google Scholar
     

  • Wannamaker, P. E. et al. Magnetotelluric observations across the Juan de Fuca subduction system in the EMSLAB project. J. Geophys. Res.: Solid Earth 94, 14111–14125 (1989).

    Article 

    Google Scholar
     

  • Key, K. & Constable, S. Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Phys. Earth Planetary Interiors 184, 194–207 (2011).

    Article 

    Google Scholar
     

  • Rabbel, W., Müller, C., Wilken, D. & Berndt, C. in Encyclopedia of Earthquake Engineering. 1–9. (Springer Berlin, 2016).

  • Shearer, P. M. Introduction to seismology. (Cambridge university press, 2019).

  • Hess, T., Meckel, T., Bangs, N. & Tatham, R. in SEG Technical Program Expanded Abstracts 2014 208–212 (Society of Exploration Geophysicists, 2014).

  • Aouad, A., Taylor, R. & Millar, N. Seismic on the edge? a 3D transition zone seismic survey from concept to final volume. ASEG Extended Abstracts 2012, 1–5 (2012).

    Article 

    Google Scholar
     

  • Eriksen*, F. N., Berndt, C., Karstens, J. & Crutchley, G. in Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7–10 July 2015. 116–119 (Society of Exploration Geophysicists, Australian Society of Exploration).

  • Planke, S., Berndt, C., Mienert, J. & Bünz, S. P-Cable: High-Resolution 3D Seismic Acquisition Technology. in INVEST 2009 Workshop. Vol. 23, 25 (2009).

  • Mountain, G. & Proust, J.-N. The New Jersey margin scientific drilling project (IODP Expedition 313): Untangling the record of global and local sea-level changes. Scientific Drilling 10, 26–34 (2010).

    Article 

    Google Scholar
     

  • Cotterill, C., McInroy, D. & Stevenson, A. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling. in EGU General Assembly Conference Abstracts. EGU2013–12645 (2013).

  • Cotterill, C., McInroy, D. & Smith, D. ECORD Mission-Specific Platform expeditions in the International Ocean Discovery Program: flexible operations and technological developments. in Geophysical Research Abstracts. Vol. 21, (2019).

  • Becker, K. & Davis, E. E. A review of CORK designs and operations during the Ocean Drilling Program. in Proc. IODP|Volume. (Vol. 301, p. 2), (2004).

  • Fisher, A. et al. M. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge. in Proc. IODP| Volume (Vol. 301, p. 2), (2005).

  • Cao, V., Schaffer, M., Taherdangkoo, R. & Licha, T. Solute reactive tracers for hydrogeological applications: a short review and future prospects. Water 12, 653 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Neira, N. et al. Cross-hole tracer experiment reveals rapid fluid flow and low effective porosity in the upper oceanic crust. Earth Planetary Sci. Lett. 450, 355–365 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, A. et al. IODP Expedition 327 and Atlantis Expedition AT 18-07: observatories and experiments on the eastern flank of the Juan de Fuca Ridge. Sci. Drill. 13, 4–11 (2012).

    Article 

    Google Scholar
     

  • Jiao, J. & Post, V. Coastal hydrogeology. (Cambridge University Press, 2019).

  • Wagener, T. et al. The future of hydrology: an evolving science for a changing world. Water Resources Res. 46, W05301 (2010).

  • Talley, D. M. et al. Research challenges at the land–sea interface. Estuarine, Coastal Shelf Sci. 58, 699–702 (2003).

    Article 

    Google Scholar
     

  • Cuthbert, M. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Climate Change 9, 137–141 (2019).

    Article 

    Google Scholar
     

  • Kundzewicz, Z. W. & Döli, P. Will groundwater ease freshwater stress under climate change? Hydrolog. Sci. J. 54, 665–675 (2009).

    Article 

    Google Scholar
     

  • Michael, H. A., Post, V. E., Wilson, A. M. & Werner, A. D. Science, society, and the coastal groundwater squeeze. Water Resources Res. 53, 2610–2617 (2017).

    Article 

    Google Scholar
     

  • Post, V. E. A., Eichholz, M. & Brentführer, R. Groundwater management in coastal zones. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Hannover, Germany, 107 (2018).

  • Colwell, F. S. & D’Hondt, S. Nature and extent of the deep biosphere. Rev. Mineral. Geochem. 75, 547–574 (2013).

  • McMahon, S. & Ivarsson, M. A new frontier for palaeobiology: Earth’s vast deep biosphere. BioEssays 41, 1900052 (2019).

    Article 

    Google Scholar
     

  • Biddle, J. F. et al. Prospects for the study of evolution in the deep biosphere. Front. Microbiol. 2, 285 (2012).

    Article 

    Google Scholar
     

  • Blatter, D., Key, K., Ray, A., Gustafson, C. & Evans, R. Bayesian joint inversion of controlled source electromagnetic and magnetotelluric data to image freshwater aquifer offshore New Jersey. Geophys. J. Int. 218, 1822–1837 (2019).

    Article 

    Google Scholar
     

  • Abd Allah, S., Mogi, T., Fomenko, E. & Kim, H. Three-dimensional Inversion of GREATEM Data: Application to GREATEM survey data from Kujukuri beach, Japan. ASEG Extended Abstracts 2016, 1–6 (2016).

    Article 

    Google Scholar
     

  • Becken, M. et al. DESMEX: a novel system development for semi-airborne electromagnetic exploration. Geophysics 85, E253–E267 (2020).

    Article 

    Google Scholar
     

  • Lofi, J. et al. Integrated onshore‐offshore investigation of a mediterranean layered coastal aquifer. Groundwater 51, 550–561 (2013).

    CAS 

    Google Scholar
     

  • MacGregor, L. & Tomlinson, J. Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. Interpretation 2, SH13–SH32 (2014).

    Article 

    Google Scholar
     

  • Lofi, J. et al. Fresh-water and salt-water distribution in passive margin sediments: Insights from Integrated Ocean Drilling Program Expedition 313 on the New Jersey Margin. Geosphere 9, 1009–1024 (2013).

    Article 

    Google Scholar
     

  • Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).

    Article 

    Google Scholar
     

  • Cohen, D. et al. Origin and extent of fresh paleowaters on the Atlantic continental shelf. USA. Groundwater 48, 143–158 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Michael, H. A. et al. Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophys. Res. Lett. 43, 10,782–710,791 (2016).

    Article 

    Google Scholar
     

  • Zamrsky, D., Karssenberg, M. E., Cohen, K. M., Bierkens, M. F. P. & Oude Essink, G. H. P. Geological heterogeneity of coastal unconsolidated groundwater systems worldwide and its influence on offshore fresh groundwater occurrence. Front. Earth Sci. 7, 339 (2020).

    Article 

    Google Scholar
     

  • Yu, X. & Michael, H. A. Offshore pumping impacts onshore groundwater resources and land subsidence. Geophys. Res. Lett. 46, 2553–2562 (2019).

    Article 

    Google Scholar
     

  • Yu, X. & Michael, H. A. Mechanisms, configuration typology, and vulnerability of pumping‐induced seawater intrusion in heterogeneous aquifers. Adv. Water Res. 128, 117–128 (2019).

    Article 

    Google Scholar
     

  • Verkaik, J. et al. Distributed memory parallel groundwater modeling for the Netherlands Hydrological Instrument. Environ. Modell. Software 143, 105092 (2021).

    Article 

    Google Scholar
     

  • Kreyns, P., Geng, X. & Michael, H. A. The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers. J. Hydrol. 586, 124863 (2020).

    Article 

    Google Scholar
     

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *